ANNUAL PROGRAM OF WORK

2019-20

CENTRAL COTTON RESEARCH INSTITUTE, MULTAN
Pakistan Central Cotton Committee
Ministry of National Food Security & Research
Government of Pakistan
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Agronomy</td>
<td>06</td>
</tr>
<tr>
<td>2. Plant Breeding & Genetics</td>
<td>09</td>
</tr>
<tr>
<td>3. Cytogenetics</td>
<td>14</td>
</tr>
<tr>
<td>4. Entomology</td>
<td>17</td>
</tr>
<tr>
<td>5. Plant Pathology</td>
<td>20</td>
</tr>
<tr>
<td>6. Plant Physiology / Chemistry</td>
<td>22</td>
</tr>
<tr>
<td>7. Transfer of Technology</td>
<td>26</td>
</tr>
<tr>
<td>8. Fibre Technology</td>
<td>28</td>
</tr>
<tr>
<td>9. Statistics</td>
<td>31</td>
</tr>
</tbody>
</table>
PREFACE

The Annual Programme of Research Work for the year 2019-2020 of Central Cotton Research Institute, Multan has been prepared keeping in view cotton production problems / constraints which limit the growers to improve cotton productivity and their profitability. The programme has been thoroughly reviewed and discussed with the scientists of Central Cotton Research Institute, Multan. The research studies will be focused on cotton production technology, high density trials, climate resilient varieties, CLCuV disease management, efficient fertilizer use, seed health improvement, insect pest management (especially Pink bollworm, Whitefly, Mealybug), insecticide resistance management, introduction and demonstration of advanced machinery including Mechanical Cotton Picker and technology dissemination.

Suggestions for further improvement of the Programme will be highly appreciated and duly acknowledged.

[Signature]

DR. ZAHID MAHMOOD
Director
Central Cotton Research Institute
Multan

March, 2019
COTTON RESEARCH & DEVELOPMENT PLANS 2019

Central Cotton Research Institute, Multan

Cotton crop has been facing many challenges during the current decade. The crop remained vulnerable to the vagaries of climatic stresses, outbreak of Pink bollworm, whitefly, bugs and cotton leaf curl virus disease. CCRI, Multan remained proactive in mitigating cotton crop challenges by evolving climate resilient and insect pest tolerant varieties. Moreover, the Institute had always endeavored to provide cost-effective cotton production technologies to the farmers using all available means. The efforts have yielded fruitful results in skill development of cotton farmers for sustaining cotton productivity.

The annual cotton research programs of the Institute have always been designed keeping in view the current production problems. The 2019 plan of work will encompass varietal development with high yield and tolerance to climatic stresses, high density planting system, insect pests management, insecticide resistance management program, soil health improvement and extension and outreach programs.

By the grace of Almighty Allah, the Institute is reaching to its 50th Year of Establishment and plans to celebrate its Golden Jubilee during the year 2020. Efforts will also be made for its preparation during the current year.

Cotton Research Experiments 2019-20

The following cotton research experiments have been proposed for planting during 2019-20 crop season by various research disciplines. Moreover, the developmental activities have also been planned by the sections as listed below:

<table>
<thead>
<tr>
<th>Section</th>
<th>Experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agronomy</td>
<td>1. Effect of time of sowing on productivity of advanced genotypes</td>
</tr>
<tr>
<td></td>
<td>2. Effect of time of sowing on production of transgenic cotton</td>
</tr>
<tr>
<td></td>
<td>3. Yield response and nitrogen use efficiency of transgenic and conventional cotton cultivars to nitrogen application</td>
</tr>
<tr>
<td></td>
<td>4. Modeling the cotton genotypes performance at temporal variations</td>
</tr>
<tr>
<td></td>
<td>5. Cotton yield response to residues management and tillage systems in cotton-wheat cropping system</td>
</tr>
<tr>
<td></td>
<td>6. Cotton yield and fiber quality response to high density planting system (HDPS)</td>
</tr>
<tr>
<td></td>
<td>7. Efficacy of pre and post plant herbicides application for weed control in cotton</td>
</tr>
<tr>
<td></td>
<td>8. Screening of pre- and post emergence weedicides in cotton</td>
</tr>
<tr>
<td>Plant Breeding & Genetics</td>
<td>1. Testing of New Strains Developed at CCRI, Multan</td>
</tr>
<tr>
<td></td>
<td>2. Standard Varietal Trial</td>
</tr>
<tr>
<td></td>
<td>3. Testing of Promising Strains of Cotton Breeders under National Coordinated Variety Testing Programme</td>
</tr>
<tr>
<td></td>
<td>4. Raising Hybrids.</td>
</tr>
<tr>
<td></td>
<td>5. Performance of Promising Strains in Bigger Block</td>
</tr>
<tr>
<td></td>
<td>6. Screening of Breeding Material against CLCuD</td>
</tr>
<tr>
<td></td>
<td>7. Maintenance of Genetic Stock of World Cotton Collection</td>
</tr>
<tr>
<td></td>
<td>8. Screening of cotton germplasm CLCuV resistance, economic traits, along with Heat and Drought tolerance</td>
</tr>
<tr>
<td></td>
<td>9. Mutation Breeding</td>
</tr>
<tr>
<td></td>
<td>10. Exploitation of out crossing in cotton</td>
</tr>
<tr>
<td></td>
<td>11. Screening of US germplasm for CLCuV</td>
</tr>
<tr>
<td>Cytogenetics</td>
<td>1. Collection and maintenance of Gossypium germplasm</td>
</tr>
<tr>
<td></td>
<td>2. Species hybridization</td>
</tr>
<tr>
<td>3.</td>
<td>Colchiploidy</td>
</tr>
<tr>
<td>4.</td>
<td>Search for Aneuploids/haploids</td>
</tr>
<tr>
<td>5.</td>
<td>Search for Bt homozygous resistance against CLCuD under field conditions</td>
</tr>
<tr>
<td>6.</td>
<td>Testing of Cyto-material in</td>
</tr>
<tr>
<td>7.</td>
<td>Testing of Cyto-material in varietal trial-1</td>
</tr>
<tr>
<td>8.</td>
<td>Mapping population development for CLCuV resistance</td>
</tr>
<tr>
<td>9.</td>
<td>Production of Pre-basic Seed</td>
</tr>
<tr>
<td>10.</td>
<td>Evaluation of new strain under varied ecological zones</td>
</tr>
</tbody>
</table>

Entomology

1. Impact of sowing period on the PBW infestation
2. Monitoring of population dynamics of different lepidopterous pests
3. Studies on tolerance level of cotton genotypes to sucking insect pest complex
4. National Coordinated Varietal Trials
5. Monitoring of insecticide resistance
6. Screening of new and commercially available insecticides
7. Activities under Projects

Plant Pathology

1. Survey on Prevalence of Diseases and Collection of Diseased Plant samples
2. Evaluation of Breeding Material against CLCuD
3. Epidemiological Studies of CLCuD

Plant Physiology / Chemistry

1. Studies on genotype - Environment Interactions
2. Plant Nutrition
3. Soil-Plant-Water Relationships
4. Seed Physiology

Transfer of Technology

1. Integrated Multi-Media Publicity Campaign
2. Training Programs
3. E-mail & face book page CCRI, Multan
4. Seminars/Workshops
5. Tele-Cotton Activities

Fibre Technology

1. Testing of Lint Samples
2. Testing of Commercial Samples
3. Effect of different moisture levels on fibre characteristics of cotton cultivars.
5. Role of stress alleviating chemicals on cotton fibre characteristics under heat stress conditions.
6. Saw & Roller Ginning Comparison for Cotton Fibre Quality
7. Quality survey of lint collected from ginning factories
8. ICA-Bremen Cotton Round Test Program, Faser Institute, Germany
9. Survey of Pakistan’s Spinning Industry

Statistics

1. Experimental Design Layout.
2. Statistical Analysis
3. Design and analysis of NCVT
4. Maintenance of Cotton Statistics
5. Study of factors effecting the cotton lint rate in Pakistan
Activities Planned under Research Projects

Pink bollworm Project: A comprehensive integrated scientific approach for the development of sustainable management strategies of Pink Bollworm (Pectinophora gossypiella)

- Rearing Technology
- Diapausing and Cyclic Behavior of PBW
- Efficacy of different insecticides against PBW in field and lab conditions.
- Identification/import and rearing of PBW predators and parasites.
- Impact of pesticides on the crop physiology/shape/canopy
- Optimum Bt toxin required for PBW control in existing cotton varieties.
- Optimum timing and stage of spray against PBW.
- Bt Resistance Monitoring
- Modelling of PBW epidemiology dynamics.
- Weather variables and relationship of PBW

Whitefly Project: Management of whitefly by integrated strategies and development of resistant cotton germplasm through genetic engineering

- Agronomic practices (planting time, spring crops associated with whitefly, weeds or alternative host plants).
- Varietal screening of plant resistance against whitefly.
- Efficacy of different insecticides against whitefly in field and lab condition.
- Resistance monitoring.
- Identification and evaluation of high quality adjuvants

Pak-US-ICARDA Cotton Project “Screening and maintenance of US cotton germplasm for the development of CLCuV resistant/tolerant genotypes by using traditional breeding approaches at CCRI Multan”

- Screening of exotic cotton germplasm for CLCuV resistance/tolerance.
- Evolution of CLCV resistant germplasm using inter- and intera-specific hybridization.
- Characterization of cotton germplasm (according to the Standard protocol of CCRI Multan).
- Preservation of newly imported cotton germplasm along with the local Cotton Germplasm
- Participation in different trainings/conferences and fellowship programs (Local).

Functioning of Insect Rearing Laboratories

- An insect rearing laboratory with controlled temperature light and humidity has been established in the Entomology Section.
- The culture of Whitefly is being maintained on living plants along with developing its susceptible strain.
- Culture of Pink bollworm is also maintained on semi-synthetic and natural diets.
- In addition, work on developing susceptible strain of armyworm (Spodoptera litura) is also underway.

Insecticide Resistant Management Program

- The Institute continued to conduct studies on Insecticide Resistance Management program in the past. Now, the program has again been started during the year 2018-19.
- Insecticide has been tested against various insect pests both under laboratory and field conditions.
- The most effective pesticides were advised for sprays to the cotton farmers.
Cotton Biotechnology Program

- Established protocols for different procedures:
 - DNA extraction
 - GEL electrophoresis,
 - Prepared stock solution and working solution,
 - Genomic DNA extraction from cotton leaves,
 - Gel electrophoresis for DNA analysis,
 - DNA quantification on the Spectrophotometer,
 - Qualitative and quantification testing of cotton sample through ELISA for Cry1AC testing of seed cotton for GMO status.
- Streamline & repair of required equipment
- Arrangements for the chemicals
- The advancement in cotton biotechnology will be furthered during the crop season 2019-20.

Establishment of Seed Testing Laboratory

- Seed germination test
- Seed Viability test (Teterazolium)
- Seed Index
- Seed kernel weight
- Pollen viability test
- Formulation of Chemical (solution) for boll setting
- Seed delintation
- Seed packing for short, medium and long term preservation
- Measurement of root-shoot length of Plant seedling for drought tolerance

Provision of Seed for Organic Cotton Cultivation in Baluchistan

- Collaboration with WWF Pakistan, SIA Foundation, Karachi and Agriculture Extension Department, Balochistan for production of organic cotton in Balochistan.
- Moreover, the Institute also will continue providing non-GMO cotton seed for experimentation to the WWF & SIA for experimentation purpose.
- The scientists of the Institute will impart training to the officials from Balochistan in advanced cotton production technology.

Growing Cotton in Hydroponics for Nutrient-Efficiency Studies at CCRI, Multan

- Initiated study of growing cotton in hydroponics to screen germplasm for potassium uptake efficiency.
- Identify potassium efficient and in-efficient cotton genotypes under low to high levels of applied potassium.
- Pot and field trials followed to evaluate the role of K in drought tolerance and its impact on nitrogen uptake.
- Study conducted in collaboration with Department of Soil & Environmental Sciences, MNS University of Agriculture, Multan.

Extension & Developmental Activities

The following extension oriented programs will be carried out during crop season 2019-20.

Training Programs:
 - Agriculture Extension Specialists
 - Plant Protection Officials
 - Pesticide/Seed/Fertilizer Companies
Textile & Ginning Industry
Pakistan Cotton Standards Institute
NGOs
Farmers

National Seminars
- Cotton Production Technology
- Use of PB Ropes and Management of Pink bollworm
- Cotton Whitefly Management
- Cotton Leaf Curl Virus Management

Cotton Crop Management Group (CCMG)
- Fortnightly Meetings
- Formation of Recommendations for Technical Advisory Committees
- Follow up for implementation of decisions taken in meetings
- Advisory for Farmers through print and electronic media

Farmers Field Day
- Two farmers field days will be organized during crop season 2019-20.

Demonstration of Advanced Machinery
- Mechanical Cotton Picker
- Mechanical Boll Picker
- Stick Puller & Shredder

“Pakistan Cottongrower” Journal
- Increased dissemination of Journal among cotton stakeholders and farmers.
- Inclusion of articles by the cotton specialists working in private sector.

TeleCotton
- The cotton farmers and Agriculture Extension & Research officials from Khyber Pakhtunkhwa and Balochistan will be added in the list.
- Technical Staff of private pesticide and seed companies will also be added in the list.

Gold Jubilee Celebrations (1970-2020)
- Planning for arrangements during 2020
 - Holding of National Seminars
 - Mega Farmers Gatherings
 - Cotton Scientists Alumini formation
 - Rennovation of Labs, Main Building, Hostels, Auditorium, Seminar Hall

================================
1. AGRONOMY SECTION

1.1 Effect of time of sowing on productivity of advanced genotypes

Objective:
To determine the optimum sowing time of different advance genotypes for productivity and CLCuD incidence

Treatments:
(a) **Sowing Date** = 5
 [April 15, May 01, May 15, June 01, June 15]
(b) **Genotypes** = 3
 [Cyto-226, Cyto-227, CIM-610]

Layout : Split plot
[Main plot: sowing date]
[Sub plot: genotypes]

Replications : 4
Plot size : 20' x 30'
Year of Expt. : 1st

Observations:
- Plant structure
- Seed cotton yield and its components
- Data on CLCuD incidence
- Fibre characteristics

Previous Year’s Results
- Crop planted on 1st March produced maximum yield (4012 kg ha\(^{-1}\)), while minimum by 15th May (2830 kg ha\(^{-1}\)).
- Averaged across the sowing dates, Bt.Cyto-511 produced significantly higher seed cotton yield than Bt. CIM-789, Bt. CIM-663, Bt. CIM-343, Bt. Cyto-515 and Bt. Cyto-179.
- The reduction in yield was 5%, 15%, 18%, 24% and 30% by delay in sowing of crop.

1.2 Effect of time of sowing on production of transgenic cotton

Objective:
To determine the optimum sowing time of different transgenic genotypes for productivity and CLCuD incidence

Treatments:
(a) **Sowing Date** = 6
 [March 15, April 01, April 15, May 01, May 15, June 01]
(b) **Genotypes** = 6
 [Bt. CIM-789, Bt. Cyto-511, Bt. CIM-678, Bt. CIM-303, Bt. Cyto-510 and Bt. Cyto-179]

Layout : Split plot
[Main: sowing date]
[Sub-plot: genotype]

Replications : 3
Plot size : 20' x 30'
Year of Expt. : Continuous

Observations:
- Plant structure
- Seed cotton yield and its components
- CLCuD incidence
- Fibre characteristics

1.3 Yield response and nitrogen use efficiency of transgenic and conventional cotton cultivars to nitrogen application

Objective:
To determine the nitrogen requirement and nitrogen use efficiency of advanced and transgenic cotton

Treatments
(a) **Genotypes** = 5
 [Cyto-226, Cyto-227, Bt. CIM-789, Bt. Cyto-511 and Bt. CIM-678]
(b) **Nitrogen** = 5
 [0, 75, 150, 225, 300 kg N ha\(^{-1}\)]

Layout : Split plot
[Main: nitrogen]
[Sub-plot: genotypes]

Replications : 3
Plot size : 20' x 30'
Sowing date : 2nd week of May
Year of Expt. : 1st

Observations:
- Plant structure
- Seed cotton yield and its components
- Agronomic nitrogen use efficiency
- Fibre characteristics

Previous Year’s Results
- The seed cotton yield was significantly affected by genotype and nitrogen levels.
- Crop fertilized with 300 kg N ha\(^{-1}\) gave increase in yield than 0, 75, 150 and 225.
- The genotype Bt.CIM-343 produced significantly higher seed cotton yield than Bt.CIM-663, Bt.Cyto-515, CIM-717 and Cyto-161.
- The genotype Bt.CIM-343 gave the highest agronomic nitrogen use efficiency over rest of the genotypes.

1.4 Modeling the cotton genotypes performance at temporal variations

Crop growth model:

Decision Support System for Agro-Technology Transfer (DSSAT)

Objective:
To assess the impact of climate change on genotypes performance and their adoptability

Treatments:

Main plot: Temporal variations: 04
- Mid March
- Mid April
- Mid May
- Mid June

Genotypes: 03
- Bt. Cyto-511
- Bt. CIM-789
- Bt. Cyto-179

Layout: Split plot
Plot size: Available experimental area

Year: 2nd
Observations:
- Phenology
- Plant morphology
- Seed cotton yield and its component
- Fiber quality

1.5 Cotton yield response to residues management and tillage systems in cotton-wheat cropping system

Objective:
To evaluate the effects of cotton sticks and wheat straw incorporation in combination with tillage systems on crop productivity

Treatments:

Main plot: Residues incorporation: 04
- No residue incorporation
- Wheat straw incorporation
- Cotton sticks incorporation
- Cotton sticks and wheat straw incorporation

Sub-plot: Tillage system: 02
- Conventional
- Chiseling and conventional

Layout: Split plot
Plot size: Available experimental area
Sowing time: Mid May

Variety: Bt. Cyto-179
Year: 2nd

Observations:
- Pre and post harvest soil organic matter contents
- Plant structure
- Seed cotton yield and its components
- Fiber traits
1.6 Cotton yield and fiber quality response to high density planting system (HDPS)

Objective:
To evaluate the impact of high density planting system on cotton yield and fiber quality

Treatments:
- **Row spacing:** 3 (45 cm, 60 cm and 75 cm)
- **Plant spacing:** 3 (15 cm, 22.5 cm and 30 cm)

Layout: Split plot

Main plot: Row spacing

Sub-plot: Plant spacing

Plot size: 20 X 30 ft

Replication: 03

Sowing date: 1st week of May

Genotypes: Bt. CIM-343 and Bt. Cyto-313

Year of exp.: 2nd

Observations:
- Plant structure
- Seed cotton yield and its components
- Fiber quality

Previous Year’s Results

- The genotype Bt.Cyto-313 produced more seed cotton yield than Bt.CIM-343
- The seed cotton yield was decreased by widening the plant to plant spacing
- The seed cotton yield was decreased from 2927 to 2342 kg ha\(^{-1}\) by increasing plant to plant spaces from 15.0 to 30.0 cm

1.7 Efficacy of pre and post plant herbicides application for weed control in cotton

Objective:
To find out the effect of various pre and post emergence herbicides on weed control in cotton.

1.8 Screening of pre- and post-emergence weedicides in cotton

Objective:
To screen out pre- and post-emergence weedicides for effective weed control in cotton.

Treatments:
- **Weedicides:** Variable

Layout : R.C.B.D

Replications : 4

Plot size : 20' X 30'

Sowing time : Mid May

Variety : Bt.CIM -179

Year of Expt. : Continuous

Observations:
- Weed density
- Plant structure
- Seed cotton yield and its components
2. BREEDING & GENETICS SECTION

2.1 Testing of New Strains Developed at CCRI, Multan

2.1.1 Varietal Trial-1
Objective: Evaluation of medium long staple Bt. strains against commercial varieties.
- Strains: 5 CM-1 to CM-5 (5+2 Std)
- Standards: 2 IUB-13, Bt.CIM-602
- Design: Randomized complete block
- Repeats: 3
- Plot Size: 40' x 10'
- Locations: 2 (Multan, Khanewal)
- Year of Expt.: Continuous

2.1.2 Varietal Trial-2
Objective: Evaluation of medium long staple Bt. Strains against commercial varieties
- Strains: 6 CM-6 to CM-11 (6+2 Std)
- Standards: 2 IUB-13, Bt. CIM-602
- Design: Randomized complete block
- Repeats: 3
- Plot Size: 40' x 10'
- Locations: 2 (Multan, Khanewal)
- Year of Expt.: Continuous

2.1.3 Varietal Trial-3
Objective: Evaluation of medium long staple non-Bt. strains against commercial varieties.
- Strains: 8 CM-12 to CM-19 (8+2 Std)
- Standards: 2 IUB-13, Bt. CIM-602
- Design: Randomized complete block
- Repeats: 3
- Plot Size: 40' x 10'
- Locations: 2 (Multan, Khanewal)
- Year of Expt.: Continuous

2.1.4 Varietal Trial-4
Objective: Evaluation of medium long staple non-Bt. strains against commercial varieties.
- Strains: 8 CM-20 to CM-27 (8+2 Std)
- Standards: 2 IUB-13, Bt. CIM-602
- Design: Randomized complete block
- Repeats: 3
- Plot Size: 40' x 10'
- Locations: 2 (Multan, Khanewal)
- Year of Expt.: Continuous

2.1.5 Varietal Trial-5
Objective: Evaluation of medium long staple non-Bt. strains against commercial varieties.
- Strains: 6 CM-28 to CM-33 (6+1 Std)
- Standards: 2 CIM-620
- Design: Randomized complete block
- Repeats: 3
- Plot Size: 40' x 10'
- Locations: 2 (Multan, Khanewal)
- Year of Expt.: Continuous

2.1.6 Micro-Varietal Trial-1
Objective: Evaluation of newly bulked medium long staple Bt. Strains against commercial varieties
- Strains: 8 1/2019 to 08/2019
- Standard: Bt. CIM-602
- Design: Randomized complete block
- Repeats: 3
- Plot Size: 30' x 10'
- Year of Expt.: First

2.1.7 Micro-Varietal Trial-2
Objective: Evaluation of newly bulked high lint percentage Bt. strains
- Strains: 8 9/2019 to 16/2019
- Standard: Bt. CIM-602
- Design: Randomized complete block
- Repeats: 3
- Plot Size: 30' x 10'
- Year of Expt.: First

2.1.8 Micro-Varietal Trial-3
Objective: Evaluation of newly bulked long staple Bt. Strains
- Strains: 8 17/2019 to 24/2019
- Standard: Bt. CIM-602
- Design: Randomized complete block
- Repeats: 3
- Plot Size: 30' x 10'
- Year of Expt.: First
2.1.9 Micro-Varietal Trial-4 (Non Bt)
Objective: Evaluation of newly bulked Non Bt. Strains
Strains: 8
25/2019 to 32/2019
Standard: CIM-573
Design: Randomized complete block
Repeats: 3
Plot Size: 30' x 10'
Year of Expt.: First

2.1.10 Micro-Varietal Trial-5
Objective: Evaluation of newly bulked Non Bt. Strains
Strains: 8
33/2019 to 40/2019
Standard: CIM-573
Design: Randomized complete block
Repeats: 3
Plot Size: 30' x 10'
Year of Expt.: First

2.1.11 Micro-Varietal Trial-6
Objective: Evaluation of newly bulked strains
Strains: 8
41/2019 to 48/2019
Standard: Bt. CIM-602
Design: Randomized complete block
Repeats: 3
Plot Size: 30' x 10'
Year of Expt.: First

2.1.12 Micro-Varietal Trial-7
Objective: Evaluation of newly bulked strains
Strains: 8
49/2019 to 56/2019
Standard: Bt. CIM-602
Design: Randomized complete block
Repeats: 3
Plot Size: 30' x 10'
Year of Expt.: First

2.2.1 Standard Varietal Trial-I
Objective: To test the performance of commercial varieties under Multan conditions
Varieties: 7
CIM-482, CIM-473, CIM-573, Cyto-124, CIM-620, CIM-608, CIM-610
Design: Randomized complete block
Repeats: 3
Plot Size: 30' x 10'
Year of Expt.: Continuous

2.2.2 Standard Varietal Trial-II
Objective: To test the performance of commercial Bt. varieties under Multan conditions
Varieties: 20
CIM-600, CIM-602, CIM-632, Crystal-12, RH-668, RH-662, NIAB-545, Sahara-150, Sitara-15, FH-142, NIAB-1048, FH-152
Design: Randomized complete block
Repeats: 3
Plot Size: 30' x 10'
Year of Expt.: Continuous

2.3 Testing of Promising Strains of Cotton Breeders under National Coordinated Variety Testing Programme

2.3.1 National Coordinated Varietal Trial (Set-A)
Objective: To test the performance of non Bt. strains
Strains: Variable (seed to be provided by PCCC)
Design: Randomized complete block
Repeats: 4
Plot Size: 30' x 10'
Year of Expt.: Continuous

2.3.2 National Coordinated Varietal Trial (Set-B)
Objective: To test the performance of Bt. strains
Strains: Variable (seed to be provided by PCCC)
Design: Randomized complete block
Repeats: 4
Plot Size: 30' x 10'
Year of Expt.: Continuous

2.3.3 National Coordinated Varietal Trial (Set-C)
Objective: To test the performance of Bt. strains
Strains: Variable (seed to be provided by PCCC)
Design: Randomized complete block
Repeats: 4
Plot Size: 30' x 10'
Year of Expt.: Continuous
2.3.4 National Coordinated Varietal Trial (Set-D)

Objective
To test the performance of Bt. strains

Strains
Variable (seed to be provided by PCCC)

Design
Randomized complete block

Repeats
4

Plot Size
30' x 10'

Year of Expt.
Continuous

2.3.1 Provincial Coordinated Cotton Trial-I

Objective
To test the performance of promising Bt. strains of the Punjab

Strains
Variable (Seed to be provided by Director, Cotton Research Inst., Faisalabad).

Design
Randomized complete block

Repeats
3

Plot Size
20' x 10'

Year of Expt.
Continuous

2.3.2 Provincial Coordinated Cotton Trial-II

Objective
To test the performance of promising strains of the Punjab

Strains
Variable (seed to be provided by Director, Cotton Research Inst., Faisalabad).

Design
Randomized complete block

Repeats
3

Plot Size
20' x 10'

Year of Expt.
Continuous

2.4 Raising Hybrids.

2.4.1 F₁ Hybrids

Objective
To raise F₂ seed for further selection and screening against CLCuD

Hybrids
150 (H-2053 to H-2202)

Standard
1 Bt.CIM-602

Plot Size
Variable

Year of Expt.
First

2.4.2 F₂ Generation Block 1

Objective
To select the desirable segregates and screening against CLCuD

Families
16 (H-1905 to H-1920)

Standard
1 Bt.CIM-602

Plot Size
50' x 10'

Locations
3 (Multan & Khanewal)

Year of Expt.
1st

2.4.3 F₂ Generation Block-2

Objective
To select the desirable segregates and screening against CLCuD

Families
17 (H-1921 to H-1937)

Standard
Bt.CIM-602

Plot Size
50' x 10'

Locations
3 (Multan & Khanewal)

Year of Expt.
First

2.4.4 F₂ Generation Block-3

Objective
To select the desirable segregates and screening against CLCuD

Families
18 (H-1938 to H-1955)

Standard
Bt.CIM-602

Plot Size
50' x 10'

Locations
3 (Multan, Khanewal, Kot Addu)

Year of Expt.
First

2.4.5 F₂ Generation Block-4

Objective
To select the desirable segregates and screening against CLCuD

Families
20 (H-1956 to H-1975)

Standard
Bt.CIM-602

Plot Size
50' x 10'

Locations
3 (Multan, Khanewal, Kot Addu)

Year of Expt.
First

2.4.6 F₂ Generation Block-5

Objective
To select the desirable segregates and screening against CLCuD

Families
52 (H-1976 to H-2027)

Standard
Bt.CIM-602

Plot Size
50' x 10'

Locations
3 (Multan & Khanewal)

Year of Expt.
First

2.4.7 F₂ Generation Block-6

Objective
To select the desirable segregates and screening against CLCuD

Families
25 (H-2027 to H-2052)

Standard
Bt.CIM-602

Plot Size
50' x 10'

Locations
3 (Multan & Khanewal)

Year of Expt.
First
2.5 Performance of Promising Strains in Bigger Block

2.5.1 Testing of advanced strains

Objective
To test the performance of advanced strains at Punjab Seed Corporation Farms, Khanewal

Strains
6 CIM-717, Bt.CIM-343, Bt.CIM-663, Bt.CIM-303, Bt.CIM-678, Bt.CIM-789

Plot Size
0.5 hectare

Location
Khanewal

Year of Expt.
First

2.5.2 Nucleus Seed Blocks

Objective
To produce pre-basic seed of approved commercial varieties of CCRI, Multan

Varieties
7 CIM-496,CIM-506,CIM-554, CIM-573, Bt CIM-598, Bt.CIM-599, Bt. CIM-602

Plot Size
Variable

Year of Expt.
Continuous

2.5.3 Early Generation Seed

Objective
To produce pre-basic seed of approved commercial varieties of CCRI, Multan

Varieties
6 CIM-610, CIM-496, CIM-506,CIM-554,CIM-573, CIM-620

Plot Size
Variable

Year of Expt.
Continuous

2.5.4 Early Generation Seed (Bt)

Objective
To produce pre-basic seed of approved commercial varieties of CCRI, Multan

Varieties
4 Bt CIM-598, Bt.CIM-599, Bt. CIM-602, Bt.CIM-632,

Plot Size
Variable

Year of Expt.
Continuous

2.6 Screening of Breeding Material against CLCuD

2.6.1 Progeny Row Trials (Medium staple with high lint %age)

Objective
Testing and screening of promising families in F_4 to F_6 generations against CLCuD

Families
130

Design
Compact Family Block

Repeats
2

Plot Size
20 'x 7.5'

Year of Expt.
First

2.6.2 Progeny row trials (Long Staple)

Objective
Testing and screening of promising long staple families in F_4 to F_6 generations against CLCuD

Families
40

Design
Compact Family Block

Repeats
2

Plot Size
20 'x 7.5'

Year of Expt.
First

2.6.3 Selection from filial generation

Objective
Selection of promising single plants to develop further generation (F_3 to F_6)

Families
Variables

Design
Simple

Repeats
2

Plot Size
Variables

Year of Expt.
Continuous

2.6.4 Fresh Crosses

Objective
Development and widening of genetic base for the inducing desirable traits for evolution of new varieties through:

- Direct crosses
- Back crosses
- Three-way crosses

Crosses with exotic material

Year of Expt.
Continuous

2.7 Maintenance of Genetic Stock of World Cotton Collection

Objective
- Maintaining of Genetic stock
- Exchange of germplasm.

Germplasm
2000

Plot Size
12 'x 5'

Year of Expt.
Continuous
2.8 Screening of cotton germplasm CLCuV resistance, economic traits, along with Heat and Drought tolerance

- **Objective**: To use tolerant germplasm in future breeding program
- **Genotypes**: 100
- **Plot Size**: 12' x 5'
- **Year of Expt.**: Continuous
- **Collaboration**: Pathology & Physiology

2.9 Mutation Breeding

- **Strains**: 3
- **Repeats**: 3
- **Mutagens**: 2
- **Plot Size**: Variable
- **Locations**: 1 (Multan)
- **Year of Expt.**: 1st Year

2.10 Exploitation of out crossing in cotton

- **Strains**: 3
- **Marker genotype**: Russian red leaf & petal spot
- **Repeats Treatments**: 3
- **Plot Size**: Variable
- **Locations**: 2 (Multan)
- **Year of Expt.**: 1st Year

2.11 Screening of US germplasm for CLCuV

- **Strains**: 25+1
- **Repeats Treatments**: 1
- **Plot Size**: Variable
- **Locations**: 1 (Multan)
- **Year of Expt.**: 1st Year

2.12 Coordination with other Sections

<table>
<thead>
<tr>
<th>Section</th>
<th>Area of research</th>
</tr>
</thead>
</table>
| Agronomy | Agronomic assessment of advanced strains:
Sowing dates
Irrigation
Fertilizer
Spacing |
| Cytogenetics | Inter specific hybridization |
| Entomology | Screening of advanced strains for insect pest tolerance |
| Fibre technology | Testing of breeding material for fibre quality traits |
| Pathology | Screening of breeding material against CLCuD and other diseases |
| Physiology/ Chemistry | Screening of advanced strains:
Heat tolerance
Drought tolerance |

====================
3. CYTOGENETICS SECTION

3.1 Collection and maintenance of *Gossypium* germplasm

- Thirty culturable species of *Gossypium* along with 5 diploid, and 5 tetraploid hybrids; 6 triplold and 4 hexaploid hybrids; 2 pentaploid hybrids, 3 tri-species combinations will be maintained.
- Utilization of this wider genetic base for hybridization.
- Exotic collection of missing culturable species/ races for strengthening germplasm.

3.2 Species hybridization

3.2.1 Development of new hybrids involving species of different genomes by incorporating specific genes of wild species i.e. CLCuD resistance, drought and resistance or tolerance and fibre quality traits into upland cotton.

The following crossing programme will be attempted depending upon the availability of flowers:

- *G. arboreum* x *G. gossypioides*
- *G. arboreum* x *G. laxum*
- *G. arboreum* x *G. stocksii*
- *G. arboreum* x *G. somalense*
- *G. arboreum* x *G. areysianum*
- *G. arboreum* x *G. longicalyx*
- *G. hirsutum* x *G. capitis viridis*
- *G.hirsutum* x *G.gossypioides*
- *G. hirsutum* x *G. stocksii*
- *G. hirsutum* x *G. somalense*
- *G. hirsutum* x 2 (*hir.x anomalum*) x 3 *hir.*
- *G. hirsutum* x 2 (*G.arbo. x G. anomalum*) x 3 *hir.*
- (*G.hirsutum* x *G. stocksii*) x 3 *hir.*

Cytological and morphological studies will be carried out by doubling of chromosomes number where necessary.

3.2.2: Exotic germplasm selected from germplasm collection with high ginning outturn and other fiber traits will be utilized for hybridization program.

Year of Expt: 2nd

3.3 Colchíploidy

Objectives:
- To make the species auto-tetraploid specially *Gossypium arboreum* by doubling the chromosome numbers.
- To transfer CLCuV resistance in upland cotton after attaining fertility.

Year of Expt: Continuous

a. Seed treatments:
- 0.01% for 24 hours
- 0.05% for 48 hours
- 0.10% for 72 hours

b. Shoot Treatments:
- 0.01 % for 24- hrs
- 0.01 % for 48-hrs
- 0.01% for 72-hrs
- 0.05 % for 24-hrs
- 0.05 % for 48-hrs
- 0.05% for 72-hrs
- 0.10 % for 24 hours
- 0.10 % for 48 hours
- 0.10% for 72 hours

*according to Dhamayanthi and Gotmare, 2010 for the induction of polyploidy in *Gossypium*.

3.4. Search for Aneuploids/haploids

- Continuous search for aneuploids especially monosomes to identify individual chromosomes and haploids to make homozygous lines in cotton.
- Tagging of suspected plants, screening and analyses for confirmation of their chromosome number/ploidy level.

3.5. Search for *Bt* homozygous resistance against CLCuD under field conditions

3.5.1 F1 Generation

Objective:
To raise F1 seed for further selection and screening against CLCuD

Methodology:
- Hybrids: 97 (1-1/19 to 97-1/19)
- Standard: 2 (FH-142 & Cyto-179)
- Plot size: Variable
- **Year of Exp.** Continuous

3.5.2 Screening of F2 material

Objective:
To select the desirable segregates having *Bt* with concurrent tolerance against CLCuD
Methodology:
Families: 295 (1-2/19 to 195-2/19)
Standard: 2 (FH-142 & Cyto-179)
Plot size: Variable
Year of Exp. Continuous

3.5.3 Screening of F_3 material to obtain homozygous plants

Objective:
To select the desirable segregates having Bt gene with tolerance against CLCuD

Methodology:
Families: 195 (1-3/19 to 195-3/19)
Standard: 2 (FH-142 & CIM-602)
Plot size: Variable
Year of Exp. Continuous

3.5.4 Screening of F_4 material to obtain homozygous plants

Objective:
To select the desirable segregates having Bt gene with tolerance against CLCuD

Methodology:
Families: 335 (1-4/19 to 335-4/19)
Standard: 2 (FH-142 & Cyto-179)
Plot size: Variable
Year of Exp. Continuous

3.5.5 Screening of F_5 material to obtain homozygous plants

Objective:
Testing and screening of promising families in F_5 generation

Methodology:
Families: 242 (1-5/18-242-5/18)
Standard: 2 (FH-142 & Cyto-179)
Plot size: Variable
Year of Exp. Continuous

3.5.3 Screening of F_6 material to obtain homozygous plants

Objective:
Testing and screening of promising families in F_6 generation.

Methodology:
Families: 335 (1-6/18-335-6/18)
Standard: 2 (FH-142 & Cyto-179)
Plot size: Variable
Year of Exp. Continuous

3.6 Testing of Cyto-material in Micro-Varietal Trials.

3.6.1 Micro Varietal Trial-1

Objective:
Testing of virus tolerant material for economic and fibre quality traits

Treatments:
Strains: 6 (M-1/19 to M-6/19)
Standard: 1 (Cyto-179)
Lay-out RCBD
Repeats: 3
Plot size: 30’x10’
Year of Expt. 1st

3.6.2 Micro Varietal Trial-2

Objective:
Testing of newly bulked long staple strains against commercial varieties.

Treatments:
Strains: 6 (M-7/19 to M-12/19)
Standard: 2 (Cyto-179)
Lay-out RCBD
Repeats: 3
Plot size: 30’x10’
Year of Expt. 1st

3.6.3 Micro Varietal Trial-3

Objective:
Testing of newly bulked long staple strains against commercial varieties.

Treatments:
Strains: 6 (M-13/19 to M-18/19)
Standard: 1 (Cyto-179)
Lay-out RCBD
Repeats: 3
Plot size: 30’x10’
Year of Expt. 1st

3.6.4 Micro Varietal Trial-4

Objective:
Testing of newly bulked long staple strains against commercial varieties.

Treatments:
Strains: 6 (M-19/19 to M-24/19)
Standard: 2 (FH-142 & Cyto-179)
Lay-out RCBD
Repeats: 3
Plot size: 30’x12.5’
Year of Expt. 1st
3.7. Testing of Cyto-material in varietal trial-1

3.7.1 VT-1

Objective:
Testing of new advance Non-Bt strains against commercial varieties

Treatments:
Strains: 6 (V1-V7)
Standard: 2 (FH-142 & Cyto-179)
Lay-out: RCBD
Repeats: 3
Plot size: 30’x10’
Year of Expt. 2nd

3.7.2 VT-2

Objective:
Testing of new advance Bt strains against commercial varieties

Treatments:
Strains: 7(V8- V14)
Standard: 2 (FH-142 & Cyto-179)
Lay-out: RCBD
Repeats: 3
Plot size: 30’x10’
Year of Expt. 1st

3.7.3 VT-3 (Non Bt)

Objective:
Testing of new advance non-Bt strains against commercial varieties

Treatments:
Strains: 4(Cyto-225, Cyto-226, Cyto-227, Cyto-228)
Standard: 2 (Cyto-124 & CIM-608)
Lay-out: RCBD
Repeats: 3
Plot size: 30’x10’
Year of Expt. 2nd

3.8. Mapping population development for CLCuV resistance

Objectives:
Development of mapping population for CLCuV resistance

Methodology:
Hybrids: Unknown
Year of Expt. 1st
F₁ plants will be sown in greenhouse for the enhancement of population.

3.9. Production of Pre-basic Seed

Objective

To produce pre-basic seed of approved commercial varieties

Varieties: 5(Cyto-124, CIM-608, Cyto-177, Cyto-178 & Cyto-179)

Plot Size: Variable
Year of Expt: Continues

3.10 Evaluation of new strain under varied ecological zones

Objective:
1. Strain Bt. Cyto-512,513 & 514 will be included in NCVT during cropping season 2019-20 for its adaptability.
Year of Expt. 1st

2. Strain Non-Bt. Cyto-226 & 227 will be included in NCVT during cropping season 2019-20 for its wider adaptability.
Year of expt. 1st

==============
4. ENTOMOLOGY SECTION

4. Studies on Pink Bollworm

4.1 Impact of sowing period on the PBW infestation

Objective:
Levels of infestation at different sowing period.

Treatment:
Main Plots: Sowing period
1. March
2. April
3. May

Sub plots: 3 Bt & 2 non Bt varieties

Design: Split plot
Replication: 3
Year of Expt.: Continuous

Methodology:
- Appearance of rosette flower
- Record number of male moth catches trapped in sex pheromone traps
- Correlation among percentage infestation, trap catches & sowing period

Observation:
1. Note the appearance date of rosette flower
2. Collection of susceptible bolls to record PBW infestation level
3. Record number of male moth catches trapped in sex pheromone traps

Previous Year’s Results
Overall, pink bollworm infestation and percentage of live larvae were higher in early-March planting in Set I compared with May planting, Set III. So the farmers are advised to avoid planting cotton before 1 April.

4.1.2 Pink bollworm infestation in green bolls in major cotton growing area

Objective:
- To conduct survey for pink bollworm infestation in green bolls
- Comparison of PBW infestation with previous years
- Presence of Bt toxin

Locations: Variable
Year of Expt.: Continuous

Survey timing:
i. September
ii. October
iii. November

Observations:
- Collection of susceptible green bolls from Bt & non-Bt cotton varieties
- Dissection of collected bolls to record PBW infestation

Previous Year’s Results
Maximum boll infestation and live larvae were found in district Khanewal followed by Vehari as compared to other districts. Comparatively variety SS-32 seems more vulnerable to pink bollworm infestation.

4.2 Monitoring of population dynamics of different lepidopterous pests

Objective:
To record fluctuations in the population of different lepidopterous pests of cotton by using sex pheromone and light traps.

Methodology:
♦ Installation of sex pheromone baited traps for lepidopterous pests at CCRI, Multan and farmer’s field at Khanewal for:
 - Earias species
 - Helicoverpa armigera
 - Pectinophora gossypiella
♦ Installation of light traps for lepidopterous pests at CCRI, Multan for:
 - Earias species
 - Helicoverpa armigera
 - Spodoptera litura
 - Spodoptera exigua

Year of Expt.: Continuous

Observations:
- Recording male moth catches of different lepidopterous pests through sex pheromone baited traps daily at Multan and weekly at farmer’s field throughout the year.
- Recording the moth catches through light traps daily throughout the year.

Previous Year’s Results
A) Sex pheromone traps
- Comparatively, the moth catches of *P. gossypiella* were 77.5% higher at farmer’s field than at Multan. Overall male moth catches were 0.6% and 47.0% lower at Multan and
farmer’s field to that of last year
• Male moth catches of \(S. \text{ littura}\) were 33.1% and 25.5% higher at Multan and farmer’s field respectively as compared to last year
• Male moth catches of \(H. \text{ armigera}\) were 31.0% and 20.7% higher at Multan and farmer’s field respectively as compared with last year

B) Light traps
• Number of moth catches of \(S. \text{ littura}\) was 70.8% higher than that of last year
• Moth catches of \(H. \text{ armigera}\) were 52.2% higher as compared to last year

4.3 Studies on tolerance level of cotton genotypes to sucking insect pest complex

Objective
To assess the tolerance level in the promising genotypes to sucking pests.

<table>
<thead>
<tr>
<th>Cultivars</th>
<th>Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layout</td>
<td>RCBD</td>
</tr>
<tr>
<td>Replications</td>
<td>4</td>
</tr>
<tr>
<td>Plot size</td>
<td>30’ x 30’</td>
</tr>
<tr>
<td>Year of Expt.</td>
<td>Continuous</td>
</tr>
</tbody>
</table>

Observations:
• Sucking pests population and bollworms damage

4.4 National Coordinated Varietal Trials

<table>
<thead>
<tr>
<th>Cultivars</th>
<th>Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layout</td>
<td>RCBD</td>
</tr>
<tr>
<td>Replications</td>
<td>3</td>
</tr>
<tr>
<td>Year of Expt.</td>
<td>Continuous</td>
</tr>
</tbody>
</table>

Observations:
• Population of sucking pests
• Bollworms infestation and live larval population

4.5 Monitoring of insecticide resistance

Objectives:
• To monitor the levels of resistance in field strains of cotton pests
• To develop management strategies

Year of Expt. : Continuous

Methodology :
• Collection of sucking pests from different locations
• Collection of bollworms from different locations and establishing their culture in the laboratory
• Determining resistance in F1 generation

Previous Year’s Results

Sucking Pests/leaf (Set-II)
During the month of August Jassid populations in untreated plots were above ETL on all tested varieties except on CIM-600, Sitara-15 and NIAB-1048 respectively but during the month of September Jassid populations were below ETL all tested varieties. In the treated plots, Jassid was below ETL on all tested varieties in August and September. Maximum seasonal population of whitefly was noted on CIM-602. Populations in untreated plots were above ETL on all tested varieties during August and September except on FH-152, CIM-600 and CIM-632 respectively. In the treated plots, their population was below ETL on all tested varieties except on FH-152 in August but their population was fluctuating on all tested varieties during September. Maximum population was observed on Crystal-12.
In the treated and untreated plots, thrips population was below ETL on all tested varieties during cropping season. Maximum population was observed on CIM-632.
Previous Year’s Results

Amrasca devastans
Very high level of resistance to thiamethoxam was detected in tested populations of all the locations as compared to the Sus population.

Phenacoccus solenopsis
LC₅₀ value of methoxyfenozoid was generally higher in Bahawalpur location as compared to other tested insecticides.

Bemisia tabaci
LC₅₀ values of all the tested insecticides were very high except flonicamid & spirotetramat + biopower in Bahawalpur location, and acetamiprid & Bifenthrin in Muzaffar Gahr locations. High LC₅₀ values indicate resistance development to all the tested insecticides in various locations. Hence, there is a dire need to develop and imply insecticide resistance management (IRM) strategies.

4.6 Screening of new and commercially available insecticides

Objective:
To determine comparative efficacy of new and commercially available insecticides against major insect pests

- **Insecticides**: Variable
- **Layout**: RCBD
- **Replicates**: 3
- **Location**: CCRI, Multan / Farmer's field
- **Year of Expt.**: Continuous

4.7 Projects (Punjab Agriculture Research Board (PARB))

4.7.1 Studies on Pink bollworm

Activities:
1. Rearing technology
2. Diapausing and cyclic behavior of PBW
3. Efficacy of different insecticides against PBW in field and lab conditions
4. Identification /import and rearing of PBW predators and parasites
5. Impact of pesticides on the crop physiology/shape/canopy
6. Optimum BT toxin required for PBW control in existing cotton varieties
7. Optimum timing and stage of spray against PBW
8. Topping fifty days before last picking and its impact on PBW infestation
9. BT Resistance Monitoring
10. Study behavior on BT and non BT paired plots
11. Modeling of PBW epidemiology dynamics
12. Onset of PBW attack
13. Weather variables and relationship of PBW with...
5. PLANT PATHOLOGY SECTION

5.1 Survey on Prevalence of Diseases and Collection of Diseased Plant samples

Objective:

i) To estimate the incidence and severity of cotton leaf curl Disease (CLCuD) and other diseases in cotton growing areas.

ii) To collect the diseased cotton plants and other alternate hosts of CLCuV for virological studies.

iii) Survey will be conducted with the Collaboration of Entomology

Detail:

i) Documentation of CLCuD incidence and severity on cotton varieties.

ii) Collection of samples of cotton and other possible alternate hosts of whitefly infected with CLCuV

iii) Management studies for the prevalence of any disease using different fungicides and other integrated management measures.

Year of Experiment: Continuous

Previous Year’s Results

i) The maximum CLCuD was recorded in Melsi, kot addu, Bahawal Pur.

ii) Minimum incidence of the disease was recorded in Kacha khu followed by Multan districts

iii) Average severity level of disease remained medium i.e. rating scale 2.2 in all the surveyed areas

iv) The incidence of boll rot varied from 0 to 2 percent

v) The occurrence of stunting phenomenon was very low

vi) The occurrence of wilting disease was low

5.2 Evaluation of Breeding Material against CLCuD

Objective

Evaluation of cotton varieties /strains for their reaction to CLCuD.

Detail

i) The material developed by the Breeding, Cyto-genetics, US germplasm and other stations will be screened against CLCuD.

ii) Confirmation of materials for their resistance to CLCuD through petiole-graft-transmission technique.

Year of Experiment: Continuous

Previous Year’s Results

i) 263 lines included in NCVT, National Coordinated Varietal Trial, PCCT and Standard Varietal Trials, showed susceptibility to CLCuD under field conditions. Only 1 line in MVT6 showed tolerance.

5.3 Epidemiological Studies of CLCuD

Objective:

To find out the factors for incidence and progression severity of Cotton Leaf Curl Disease

A: Non Bt Genotypes

Treatments

(a) Sowing Date = 5

[April 15, May 01, May 15, June 01, June 15]

(b) Genotype = 3

[Cyto-226, Cyto-227 and CIM-610]

Layout: Split plot (main: sowing date)

Repeats: Four

Detail:

i) Data on incidence of disease at fortnightly interval after sowing

ii) Disease Index

iii) Data on weather parameters

Year of Experiment: Continuous

(In Collaboration with Agronomy Section)

Previous Year’s Results

i) The progression of disease was gradually low on crop planted in March & April, whereas sharply high on crop planted in June.

ii) Average across cultivars, minimum disease index was recorded on crop planted on 15th April

iii) Averaged across sowing time, there is no varietal difference

iv) Fortnightly increase of disease when compared with weather parameter, indicated that disease incidence was maximum in early July to the mid of September

V) Maximum temperature at 33.6~ 37.2°C and minimum temperature at 23.0 ~ 30.0°C with relative humidity of 80.9 %~ 89.1 % favoured the fortnightly increase of CLCD.
B: Bt Genotypes

Treatments

(a) Sowing Date = 6 March 15, April 01, April 15, May 01, May 15, June 01

(b) Genotype = 6 (CIM-789, CIM-678, CIM-303, Cyto-510, Cyto-511, Cyto-170)

Layout : Split plot
(main: sowing date)

Repeats : Four

Detail:

i) Data on incidence of disease at fortnightly interval after sowing.

ii) Disease Index

iii) Data on weather parameters

iv) Data on severity level of CLCuV disease at 1st and 30th September (For supporting Fiber Technology Section)

Year of Experiment : Continuous
(In Collaboration with Agronomy Section)

5.4 Evaluation of Advanced Strains in National Co-coordinated Varietal Trial (NCVT) in tolerance to Cotton Diseases.

Objective:
To determine comparative resistance/tolerance of NCVT strains to different diseases of cotton

Details:
Data on following diseases:
- Stunting
- Cotton Leaf Curl.
- Bacterial Blight
- Wilt
- Boll rot

Year of Experiment : Continuous
(In Collaboration with Agronomy Section)

Previous Year's Results

i) All strains showed susceptibility against CLCuD.

ii) The stunting phenomenon was very low in all strains

iii) In Set A minimum CLCuD severity and disease index was recorded on CRIS - 613 The incidence of disease index ranged from 58.82 to 76.19 %

iv) In Set B a minimum CLCuD severity and disease index was recorded on BH-221. The incidence of disease index ranged from 24.85. to 77.58 %

v) In Set C minimum CLCuD severity and disease index was recorded on Badar-1 (CII). The disease index ranged from 71.0 to 78.97 %

vi) In Set D minimum CLCuD severity and disease index was recorded on Eagle-3. The disease index ranged from 73.62 to 78.05 %

vii) In Set E minimum CLCuD severity and disease index was recorded on CIM-602 (Bt Std-1) The disease index ranged from 74.40 to 79.71 %.

Maximum temperature of 33~ 37.2°C and minimum temperature of 23.0 ~ 30.0°C with relative humidity of 80.9 ~ 89.1% were favoured fortnightly increases of CLCD in Bt cotton

========================
6. PLANT PHYSIOLOGY / CHEMISTRY SECTION

6.1 Studies on genotype - Environment Interactions

6.1.1 Adaptability of genotypes to high temperature stress

Objectives
(i) Comparative performance of promising genotypes under high temperature stress
(ii) To quantify physiological traits contributing to heat tolerance

Treatments
Genotypes: Promising
Planting date: mid-April
Design: RCB
Replications: 3
Year of experiment: Continuous

Observations:
- Physiological traits contributing to heat tolerance
- Seed cotton yield and its parameters

Previous Year’s Results
1. A total of 21 genotypes were tested against thermal stress tolerance under field conditions.
2. The genotypes M1-18, BH-221 and CIM-343 performed better in terms of heat-tolerance by maintaining highest dehiscence of anthers, fruit setting on first and second positions along sympodia and seed cotton production.
3. There were positive relationships of fully dehiscent anthers, pollen viability, percent boll set on 1st and 2nd position along sympodia with seed cotton yield.
4. The parameters such as cell injury, cell membrane thermostability had negative correlations with seed cotton yield.

6.1.2 Evaluation of stress alleviating chemicals in cotton under heat stress conditions

Objectives
i) To improve heat tolerance in variable cotton genotypes by the use of stress alleviating chemicals
ii) To quantify physiological and biochemical traits contributing to heat tolerance

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Bio-chemicals</th>
<th>Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>Control</td>
<td>Water alone</td>
</tr>
<tr>
<td>T2</td>
<td>Selenium (Se)</td>
<td>150 mg/L</td>
</tr>
<tr>
<td>T3</td>
<td>Hydrogen peroxide (H₂O₂)</td>
<td>30 mg/L</td>
</tr>
<tr>
<td>T4</td>
<td>Salicylic Acid (SA)</td>
<td>50 mg/L</td>
</tr>
<tr>
<td>T5</td>
<td>Moringa Leaf Extract (MLE)</td>
<td>30 ml/L</td>
</tr>
<tr>
<td>T6</td>
<td>Ascorbic Acid</td>
<td>150 mg/L</td>
</tr>
</tbody>
</table>

Bio-chemicals will be applied by foliar method

Genotypes: 2 (M1-18 & CIM-678)
Planting date: mid-April
Design: RCB
Replications: 3
Year of experiment: 1st
Observations:
- Physiological traits contributing to heat tolerance
- Seed cotton yield and its parameters

6.1.3 Characterization of cotton germplasm for heat tolerance

Objective:
- To screen the cotton germplasm for heat tolerance characteristics

Sowing date: mid-April
Design: RCB
Target entries: 100
Year of experiment: 1st
Observations:
- Cell injury
- Anther dehiscence (In collaboration with Breeding Section)

6.2 Soil Health and Plant Nutrition

6.2.1 Long term effects of minimum tillage on soil health and cotton-wheat productivity

Objective:
(i) To evaluate the effects of minimum tillage on soil health and crop productivity
(ii) To lower cost of production
6.2.2 Does phosphorus application time affect root development and cotton productivity?

Objectives

i) To determine the appropriate time of phosphorus application in cotton

ii) Phosphorus use efficiency in relation to application time

Treatments

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Application time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pre-Sowing 25 DAP 50 DAP</td>
</tr>
<tr>
<td>T1</td>
<td>Control (0) - -</td>
</tr>
<tr>
<td>T2</td>
<td>50 - -</td>
</tr>
<tr>
<td>T3</td>
<td>- 50 -</td>
</tr>
<tr>
<td>T4</td>
<td>- 25 25</td>
</tr>
</tbody>
</table>

Phosphorus dose @ 50 kg P$_2$O$_5$/ha

Design: RCBD

Variety: Two

Year of experiment: 1st

Location: CCRI, Multan

Observations

- Pre-sowing and post-harvest soil analyses
- Soil microbial population
- Cost analysis
- Crop growth and productivity

6.2.3 Comparative effectiveness of CAN and NP in comparison with Urea and DAP fertilizers in cotton

Objectives

i) To evaluate the effectiveness of 1:1 Ammonical and Nitrate based CAN (N = 26%) and NP (P$_2$O$_5$ =20% N= 22%) in comparison to Ammonical DAP (P$_2$O$_5$ = 46%, N = 18%) & Urea (N = 46%) combination in increasing yield of Cotton crop.

ii) To determine the value cost ratio of CAN and NP in comparison to DAP & Urea combinations

iii) To assess the role of Calcium in reducing CLCV attack at different growth stages in cotton crop.

Location: CCRI, Multan

Area: 1 Acre

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Source of Nutrients</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
</tr>
<tr>
<td>T1</td>
<td>0</td>
</tr>
<tr>
<td>T2</td>
<td>90</td>
</tr>
<tr>
<td>T3</td>
<td>90</td>
</tr>
<tr>
<td>T4</td>
<td>90</td>
</tr>
<tr>
<td>T5</td>
<td>90</td>
</tr>
</tbody>
</table>

Observations

- Pre-sowing and post-harvest soil analyses
- Seed cotton yield & Components
- Plant Structure Development
- Fruit production

6.3 Soil-Plant-Water Relationships

6.3.1 Adaptability of genotypes to water stress conditions

Objectives

i) Evaluating the performance of transgenic genotypes under water stress conditions

ii) Quantifying physiological traits contributing to water stress tolerance

Treatments

Irrigation levels: 2

<table>
<thead>
<tr>
<th>Irrigation levels</th>
<th>[-1.6 \pm 0.2 MPa LWP (ψ_w)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>No stress</td>
<td>(-2.4 \pm 0.2 MPa LWP ψ_w)</td>
</tr>
</tbody>
</table>
Genotypes: Multiple
Design: Split plot (Main: Irrigation levels)
Replications: 4
Year of expt.: Continuous
Location: CCRI, Multan

Observations
• Crop growth parameters
• Gas exchange characteristics
• Seed cotton yield and its parameters
• Water use efficiency

Previous Year Studies
1. A total of 16 genotypes were tested under normal irrigation and water deficit stress conditions.
2. The genotypes showed variable response to applied irrigation water levels. Seed cotton yield varied from 1958 to 2334 kg ha\(^{-1}\) in normal irrigated crop (80%) while the yield ranged from 1211 to 2184 kg ha\(^{-1}\) under water deficit condition (50%) in different genotypes. The genotype CIM-678 produced highest yield in no stress while the highest yield under water stress was produced by Cyto-510.
3. Imposition of water stress (50% of normal irrigation) caused an average decrease of 12.5% in seed cotton yield, 7.3% in boll weight and 4.5% in bolls per plant.

6.3.2 Evaluation of selected K-screened cotton cultivars for drought tolerance characteristics

Objectives:

i) To evaluate the role of K in eliminating adverse effects of drought stress

ii) To explore the genetic variability of cotton genotypes in K-utilization efficiency

Design: Split-split plot
Replications: 4

<table>
<thead>
<tr>
<th>Irrigation levels</th>
<th>K(_2)O levels (kg ha(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>No Stress, (-1.6 + 0.2) MPa LWP</td>
<td>V1</td>
</tr>
<tr>
<td>V2</td>
<td>V2</td>
</tr>
<tr>
<td>V3</td>
<td>V3</td>
</tr>
<tr>
<td>V4</td>
<td>V4</td>
</tr>
<tr>
<td>V5</td>
<td>V5</td>
</tr>
<tr>
<td>Water stress, (-2.4 + 0.2) MPa LWP</td>
<td>V1</td>
</tr>
<tr>
<td>V2</td>
<td>V2</td>
</tr>
<tr>
<td>V3</td>
<td>V3</td>
</tr>
<tr>
<td>V4</td>
<td>V4</td>
</tr>
<tr>
<td>V5</td>
<td>V5</td>
</tr>
</tbody>
</table>

Varieties 5: (K-efficient: 3, K-sensitive: 2)

Date of sowing: May 2019

Year of expt.: 2\(^{nd}\)

Observations
• Crop growth parameters
• Gas exchange characteristics
• Seed cotton yield and its parameters
• Water use efficiency
• Fibre quality

Previous year's studies
1. A total of 5 genotypes were used to explore K role in normal irrigation (NS; \(-1.6 + 0.2\) MPa LWP) and water deficit stress (WS; \(-2.0 + 0.2\) MPa LWP) conditions.
2. The genotypes showed variable response to applied K and irrigation water levels. In the absence of K seed cotton yield varied from 1723 to 2234 kg ha\(^{-1}\) in NS plots while the yield ranged from 1498 to 2035 kg ha\(^{-1}\) in WS plots in different genotypes. Seed cotton yield increased with K application and it varied from 1910 to 2800 kg ha\(^{-1}\) in NS plots while from 1874 to 2645 kg ha\(^{-1}\) in WS plots in different genotypes.
3. Improvement in yield across the genotypes by K application was 22.8% and 29.8%, respectively in NS and WS conditions. Among the genotypes, CYTO-124 produced the maximum seed cotton yield and boll weight in all treatments.
6.4 Seed Physiology
6.4.1 Exploring the role of antioxidants, growth hormone in cotton plant growth, cottonseed health and productivity

Objective
i) To evaluate the efficacy of applied antioxidants, growth hormone on seed health and transgenic cotton production
ii) To find out the best application method

Methodology
- Antioxidant ascorbic acid and growth hormone gibberellic acid will be applied by seed priming with or without foliar sprays.
- Three foliar sprays at 30, 60 and 90 DAP will be applied with prescribed concentrations.
- All the plots will receive recommended fertilizers.

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Seed Priming (SP)</th>
<th>SP + Foliar Application (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>Water alone (Control)</td>
<td>Water alone (Control)</td>
</tr>
<tr>
<td>T2</td>
<td>AA (50)</td>
<td>AA (200)</td>
</tr>
<tr>
<td>T3</td>
<td>CA (100)</td>
<td>CA (400)</td>
</tr>
<tr>
<td>T4</td>
<td>GA (10)</td>
<td>GA (50)</td>
</tr>
<tr>
<td>T5</td>
<td>AA (50) + CA (100)</td>
<td>AA (100) + CA (200)</td>
</tr>
<tr>
<td>T6</td>
<td>AA (50) + GA (10)</td>
<td>AA (100) + GA (25)</td>
</tr>
</tbody>
</table>

AA = Ascorbic acid, GA = Giberellic acid

Design: Split-plot
Replications: 3
Variety: CIM-343
Date of sowing: May, 2018
Year of Expt.: 2nd

Observations
- Plant structure development
- Fruit production
- Seed cotton yield and components
- Seed health parameters

Previous Year’s Results
1- Seed cotton yield differed significantly among various treatments. In seed primed plots, yield varied from 3505 to 3864 kg ha⁻¹ while in foliar sprayed plots it ranged from 3545 to 4143 kg ha⁻¹ in different treatments.
2- The maximum yield was produced in Gibberellic acid (GA) treated plots both in seed primed (10 mg/l) and foliar sprayed (50 mg/l).
3- GOT in different treatments varied from 35.4 to 37.5%.
4- Free fatty acids were within safe limits (<1.0%). In primed plots, seed germination varied from 70-85%, seed index from 6.57-7.44g, oil content from 10 to 16% and crude protein from 21.0 to 27.7% in different treatments. While in foliar sprayed plots seed germination varied from 77-87%, seed index from 6.91-7.87g, oil content from 11 to 18% and crude protein from 22.0 to 28.9% in different treatments.
7. TRANSFER OF TECHNOLOGY

7.1 Integrated Multi-Media Publicity Campaign

Objectives:

i) Development of multi-media publicity materials on profitable cotton production technology.

ii) Use of media campaign to disseminate the latest technology/research findings to various target groups.

♦ Extension workers
♦ Cotton growers
♦ Field staff of private pesticide / fertilizer / seed industry
♦ Students from Agriculture Colleges/ Universities
♦ Non-government organizations (NGO’s)

7.1.1 Print Media

A Publications

i) Management of Cotton cultivation

ii) Recommendations for better germination of cotton seed

iii) Kapas mein Potash ki Ahmiyat

iv) Management of sucking pests

v) Management of bollworms

vi) Weed management in cotton

vii) Production technology for approved CCRI varieties.

viii) Balanced use of fertilizers

ix) Management of Mealy bug

x) Management of CLCuV

xi) Importance of nozzle for better spray coverage (insecticide & weedicides).

xii) Micronutrients

xiii) Production technology of Bt. cotton

xiv) Clean cotton picking and its storage.

xv) Articles on various aspects of cultivation practices in cotton.

xvi) Preparation of technical reports

B Press Releases

Variable.

7.1.2 Electronic Media

A T.V. Programs

i) Participation of scientists/experts in agriculture programs of different channels

ii) TV Tellops

iii) TV Discussion

iv) Video stock-shots of different cultivation practices in cotton.

B Radio Programs

Dissemination of new cotton production technology.

7.2 Training Programs

Objectives:

Training Programs / Refresher Courses for:

i) Agronomy of the cotton crop

ii) Soil health & nutrient management

iii) Cotton Production Technology

iv) Seed Production technology

v) Integrated Weed Management (IWM)

vi) Integrated Pest Management (IPM)

sucking insect pests especially white fly

Strategy against Pink Bollworm

vii) Management strategy against CLCuV

viii) Seed health and nutrient management

ix) Application of PB-Rope & sucking insect pest management

Target Groups:

Officers and staff of the Department of Agriculture Extension

Cotton growers

Technical / Field staff of pesticide, fertilizer & seed industry

Staff of NGO’s

Activities:

♦ Planning, development and execution of training / refresher courses

♦ Production for training materials

C New Studio-Setup

To make a new studio-setup in a recording room

Previous Year’s Activities

<table>
<thead>
<tr>
<th>Program</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radio Programs</td>
<td></td>
</tr>
<tr>
<td>Radio Talks</td>
<td>04</td>
</tr>
<tr>
<td>Radio Interview</td>
<td>01</td>
</tr>
<tr>
<td>Group Discussion</td>
<td>01</td>
</tr>
<tr>
<td>Radio News/Press releases</td>
<td>53</td>
</tr>
<tr>
<td>TV Programs</td>
<td></td>
</tr>
<tr>
<td>Interview/Programs</td>
<td>12</td>
</tr>
<tr>
<td>TV / Press Coverage</td>
<td>10</td>
</tr>
<tr>
<td>Meetings / Seminars</td>
<td></td>
</tr>
<tr>
<td>Press releases</td>
<td>53</td>
</tr>
<tr>
<td>Articles in newspapers & magazines</td>
<td>03</td>
</tr>
<tr>
<td>Press Report</td>
<td>01</td>
</tr>
</tbody>
</table>
Previous Year’s Activities

<table>
<thead>
<tr>
<th>Organized/ Coordinated by</th>
<th>Participant</th>
<th>No. of Participants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agri.(Ext.), Punjab & CCRI , Multan</td>
<td>Master Trainees</td>
<td>139</td>
</tr>
<tr>
<td>CCRI & South Asian Sourcing (SAS) Pvt. Ltd</td>
<td>i. Farmers</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>ii. SAS staff</td>
<td>05</td>
</tr>
<tr>
<td>CCRI & Private Sector</td>
<td>i. Field Staff: Pesticide & Seed</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>ii. NGO</td>
<td>06</td>
</tr>
<tr>
<td>FFC & CCRI</td>
<td>i. Farmers</td>
<td>190</td>
</tr>
<tr>
<td>Pakistan Farmers Forum (NGO)</td>
<td>ii. FFC Staff</td>
<td>13</td>
</tr>
<tr>
<td>CCCI & FSC & RD</td>
<td>Seed dealers</td>
<td>450</td>
</tr>
<tr>
<td>PCSI, Multan</td>
<td>Cotton Selectors</td>
<td>88</td>
</tr>
<tr>
<td>CCCI & Sangtani Organization, NGO</td>
<td>i. Master Trainee</td>
<td>07</td>
</tr>
<tr>
<td></td>
<td>ii. Farmers</td>
<td>247</td>
</tr>
<tr>
<td></td>
<td>iii. NGO’s Staff</td>
<td>13</td>
</tr>
<tr>
<td>CCCI, Multan</td>
<td>Farmers</td>
<td>378</td>
</tr>
<tr>
<td>Agri. Ext. KPK & Balochistan</td>
<td>Master Trainee</td>
<td>23</td>
</tr>
<tr>
<td>WWF & CCRI</td>
<td>i. Master Trainee</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>ii. Farmers</td>
<td>115</td>
</tr>
</tbody>
</table>

7.3 Email & facebook page CCRI, Multan
- Updating cotton research & development (RD) activities on link www.facebook.com/CCRIM.PK

Email : ccri.multan@yahoo.com
- Email sent > 1023
- Email received > 1719

7.4 Seminars/Workshops
Participation in seminars, workshops and conferences organized by different institutions:

7.5 Other Activities
- i) Making arrangements of meetings, seminars & workshops.
- ii) Facilitate the visits of dignitaries and students of different institutions.
- iii) Participation in Agricultural Exhibitions.
- iv) Social media activities (facebook, Whatsapp & YouTube)

7.6 Tele-Cotton Activities

7.7 Agriculture Show/ Mela

<table>
<thead>
<tr>
<th>Previous Years Activity</th>
<th>Date</th>
<th>Organized by</th>
<th>Venue</th>
</tr>
</thead>
<tbody>
<tr>
<td>30th March to 1st April, 2018</td>
<td>Dunya TV, Lahore & B.Z.U Multan</td>
<td>B.Z.U Multan</td>
<td></td>
</tr>
<tr>
<td>April 4, 2018</td>
<td>Nawa-e-Waqf Group</td>
<td>Qila Quhna Qasim Baugh, Multan</td>
<td></td>
</tr>
</tbody>
</table>
8. FIBRE TECHNOLOGY SECTION

8.1 Testing of Lint Samples

Objective:
To provide technical support to various sections of the Institute and other Research Institutes/Stations of public sector and PCCC in testing of the fibre characteristics and spinning of their research material.

Year of Experiment: Continuous

<table>
<thead>
<tr>
<th>Departments</th>
<th>No. of Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breeding, CCRI, Multan</td>
<td>52237</td>
</tr>
<tr>
<td>Cytogenetics, CCRI Multan</td>
<td>15735</td>
</tr>
<tr>
<td>Agronomy, CCRI, Multan</td>
<td>141</td>
</tr>
<tr>
<td>Fibre Technology, CCRI, Multan</td>
<td>931</td>
</tr>
<tr>
<td>Plant Physiology, CCRI, Multan</td>
<td>1599</td>
</tr>
<tr>
<td>Director’s research material, CCRI, Multan</td>
<td>1533</td>
</tr>
<tr>
<td>CCRI, Sakrand</td>
<td>2475</td>
</tr>
<tr>
<td>CRS, M.P. Khas</td>
<td>441</td>
</tr>
<tr>
<td>CRS, Sahiwal</td>
<td>750</td>
</tr>
<tr>
<td>CRS, Ghotki</td>
<td>2604</td>
</tr>
<tr>
<td>CRS, D.I.Khan</td>
<td>4650</td>
</tr>
<tr>
<td>CRS, Lasbella</td>
<td>357</td>
</tr>
<tr>
<td>CEMB, Lahore</td>
<td>105</td>
</tr>
<tr>
<td>Spot Examination, Faisalabad</td>
<td>105</td>
</tr>
<tr>
<td>FSC & RD, Khanewal</td>
<td>279</td>
</tr>
<tr>
<td>Thatha Gurmani Farm</td>
<td>984</td>
</tr>
<tr>
<td>Yield competition, Agri Ext. M.garh</td>
<td>9</td>
</tr>
<tr>
<td>Quality Survey (Sindh)</td>
<td>4443</td>
</tr>
<tr>
<td>Quality Survey (Punjab)</td>
<td>2428</td>
</tr>
<tr>
<td>Quality Survey (KPK)</td>
<td>144</td>
</tr>
<tr>
<td>Research Scholars (MNSUA+BZU)</td>
<td>219</td>
</tr>
<tr>
<td>Total</td>
<td>92169</td>
</tr>
</tbody>
</table>

8.2 Testing of Commercial Samples

Objective:
To extend fibre testing facilities to private sector in testing of lint samples.

Year of Experiment: Continuous

8.3 To study the effect of different moisture levels on fibre characteristics of cotton cultivars.

Objective:
Moisture is very important factor in cotton fibre testing & processing. The standard atmospheric conditions are temperature 20 ± 2 °C & RH% 65 ± 2. It is recommended that the samples should be conditioned for at least 24 hours at standard atmospheric conditions. The samples should be tested at different moisture levels to investigate the effect of moisture on different fibre traits.

Year of Experiment: Continuous

Treatments:
(a) Varieties: Variable

(b) Methodology:
 i. Samples collection of different cultivars.
 ii. Samples conditioning for three moisture levels
 a) 6 %
 b) 8.5 %
 c) 11 %
 iii. Testing of fibre characteristics
 a) Lint %
 b) Seed Index (g)
 c) Fibre Length
 d) Fibre Strength
 e) Uniformity Index
 f) Micronaire Value
 g) Short Fibre Index
 h) Elongation %

8.4 To study the effect of Potassium fertilizer & water stress on quality characteristics of cotton fibre.

Objective:
The objective of this study to evaluate the role of potassium fertilizer on fibre quality characteristics under no stress and water stress conditions.
Treatments

<table>
<thead>
<tr>
<th>Water stress levels</th>
<th>K₂O levels (kg ha⁻¹)</th>
<th>0</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Stress -1.6 - 0.2 MPa (LWP)</td>
<td>Cotton genotypes</td>
<td>V1</td>
<td>V1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V2</td>
<td>V2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V3</td>
<td>V3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V4</td>
<td>V4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V5</td>
<td>V5</td>
</tr>
<tr>
<td>Water stress -2.4 - 1.0 MPa</td>
<td>Cotton genotypes</td>
<td>V1</td>
<td>V1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V2</td>
<td>V2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V3</td>
<td>V3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V4</td>
<td>V4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V5</td>
<td>V5</td>
</tr>
</tbody>
</table>

V1=CIM-707, V2=Cyto-124, V3=IUB-2013, V4=MNH-886, V5= BH-212

Design: Split-Split plot

Methodology:

i. Collection of opened bolls from no potassium application, 50 kg ha⁻¹ potassium application with water stress and no water stress conditions of five varieties.

ii. Ginning of seed cotton samples for various fibre characteristics.

iii. Testing of different fibre characteristics

Observations:

- Lint %
- Fibre Length
- Uniformity Index
- Micronaire Value
- Fibre Strength
- Colour Grade

(Collaboration: Plant Physiology/Chemistry Section)

Year of Experiment: 2nd

8.5 The role of stress alleviating chemicals on cotton fibre characteristics under heat stress conditions.

Objectives

The objective of this study is to evaluate the role of stress alleviating chemicals on cotton fibre characteristics under heat stress conditions.

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Bio-chemicals</th>
<th>Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1 Control</td>
<td>Water alone</td>
<td></td>
</tr>
<tr>
<td>T2 Selenium (Se)</td>
<td>150 mg/L</td>
<td></td>
</tr>
<tr>
<td>T3 Hydrogen peroxide (H₂O₂)</td>
<td>30 mg/L</td>
<td></td>
</tr>
<tr>
<td>T4 Salicylic Acid (SA)</td>
<td>50 mg/L</td>
<td></td>
</tr>
<tr>
<td>T5 Moringa Leaf Extract (MLE)</td>
<td>30 ml/L</td>
<td></td>
</tr>
<tr>
<td>T6 Ascorbic Acid</td>
<td>150 mg/L</td>
<td></td>
</tr>
</tbody>
</table>

Bio-chemicals will be applied by foliar method

Genotypes: 2 (M1-18 & CIM 678)

Design: RCB

Year of experiment: 1st

8.6 Saw & Roller Ginning Comparison for Cotton Fibre Quality

Objective:

The experiment is design to investigate the effect of Roller & Saw ginning on lab and commercial scale on fibre quality.

Methodology:

Two varieties (long and short staple) of the institute will be selected for experiment. The collected seed cotton is ginned at roller and saw ginning machines on lab scale and commercial ginning machines.
Observations:
- Lint %
- Seed Index (g)
- Fibre Length
- Uniformity Index
- Micronaire Value
- Fibre Strength
- Colour grade

Year of Experiment: 2nd

8.7 Quality survey of lint collected from ginning factories

Objective:
A quality survey will be conducted to know the lint quality of the ginning factories during the cotton season.

Methodology:
- Collection of lint samples from the ginning factories of different districts in Punjab.

Observations:
- Fibre Length
- Uniformity Index
- Micronaire
- Fibre Strength
- Colour Grade

Year of Experiment: Continuous

8.8 ICA-Bremen Cotton Round Test Program, Faser Institute, Germany

Objective:
To keep the fibre testing equipment in calibrated form. Moreover, to examine analysis of fibre at par with other fibre testing facilities in the world.

Detail:
Three lint samples will be received from the Faser Institute, Bremen, Germany. The samples will be tested for different fibre characteristics. The results will be sent to Faser institute, Germany for comparative analysis.

Year of Experiment: Continuous

03 samples were received from Faser Institute, Germany for fibre analysis during the period under report.

8.9 Survey of Pakistan's Spinning Industry

Objective:
To collect data regarding the utilization of cotton fibre with special reference of the cotton fibre traits and others fibres as well in industry to focusing the Economics comparatives.

Methodology:
A comprehensive questionnaire will be shared to keeping in-view all the set objectives and industry will be visited to collect the required data.

Year of Experiment: Continuous

======================
9. STATISTICS SECTION

9.1 Experimental Design Layout.

Objective: To make lay out plan for experiments which will be conducted by sections of the institute. The experimental design facility will also be provided to various Research Stations of PCCC.

Detail: In collaboration with sections of the institutes lay out plan for different experimental design will be chalked out. Data tables of experiments will be analyzed statistically.

<table>
<thead>
<tr>
<th>Previous Year's Work</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>R.C.B.D.</td>
<td>179</td>
</tr>
<tr>
<td>Split Plot.</td>
<td>8</td>
</tr>
<tr>
<td>F-Pool</td>
<td>12</td>
</tr>
<tr>
<td>Regression.</td>
<td>--</td>
</tr>
<tr>
<td>Corelation</td>
<td>--</td>
</tr>
<tr>
<td>Graphical Representation</td>
<td>--</td>
</tr>
<tr>
<td>Total:</td>
<td>199</td>
</tr>
</tbody>
</table>

9.2 Statistical Analysis

Objective: To perform statistical analysis of experimental data provided by sections of the institute. The analysis facility will also be provided to Cotton Research Stations of PCCC. Guidance will be provided for the interpretation of the analysis.

9.3 Design and analysis of NCVT

Objective: The Directorate of Research Pakistan Central Cotton Committee performs National Coordinated Varietal Trail at fourteen locations all over Pakistan. The layout of the experiment will be made and analysis will be performed by this section.

<table>
<thead>
<tr>
<th>Previous Year's Work</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>R.C.B.D. (NCVT)</td>
<td>140</td>
</tr>
</tbody>
</table>

9.4 Maintenance of Cotton Statistics

Objective: To maintain the record of cotton statistics and rates of cotton commodities.

Detail: The record of cotton statistics and daily rates of cotton commodities will be maintained.

Year: Continuous

<table>
<thead>
<tr>
<th>Previous Year's Prices</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Average Price Rs per 40 Kg at Multan)</td>
</tr>
<tr>
<td>Seed cotton</td>
</tr>
<tr>
<td>Cottonseed</td>
</tr>
<tr>
<td>Cottonseed Cake</td>
</tr>
<tr>
<td>Cottonseed Oil</td>
</tr>
<tr>
<td>Lint</td>
</tr>
</tbody>
</table>

Source: Market Committee Multan. (October 2018 to December 2018)

9.5 Study of factors effecting the cotton lint rate in Pakistan

Objective: The main objective of this experiment is to identifying different factors and study their relative influence on cotton lint rate.

Year: 1st

=============

31
CENTRAL COTTON RESEARCH INSTITUTE
Old Shuja Abad Road, Multan, Pakistan

Phones +92-61-9200340-41
Website: www.ccri.gov.pk
FB: www.facebook.com/CCRIM.PK

Fax: +92-61-9200342
Email: ccri.multan@yahoo.com
dir@ccri.gov.pk